Control of late off-center cone bipolar cell differentiation and visual signaling by the homeobox gene Vsx1.
نویسندگان
چکیده
Retinal bipolar cells are interneurons that transmit visual signals from photoreceptors to ganglion cells. Although the visual pathways mediated by bipolar cells have been well characterized, the genes that regulate their development and function are largely unknown. To determine the role in bipolar cell development of the homeobox gene Vsx1, whose retinal expression is restricted to a major subset of differentiating and mature cone bipolar (CB) cells, we targeted the gene in mice. Bipolar cell fate was not altered in the absence of Vsx1 function, because the pan-bipolar markers Chx10 and Ret-B1 continued to be expressed in inner nuclear layer neurons labeled by the Vsx1-targeting reporter gene, tauLacZ. The specification, number, and gross morphology of the subset of on-center and off-center (OFF)-CB cells defined by tauLacZ expression from the Vsx1 locus were also normal in Vsx1(tauLacZ)/Vsx1(tauLacZ) mice. However, the terminal differentiation of OFF-CB cells in the retina of Vsx1(tauLacZ)/Vsx1(tauLacZ) mice was incomplete, as demonstrated by a substantial reduction in the expression of at least four markers (recoverin, NK3R, Neto1, and CaB5) for these interneurons. These molecular abnormalities were associated with defects in retinal function and documented by electroretinography and in vitro ganglion cell recordings specific to cone visual signaling. In particular, there was a general reduction in the light-mediated activity of OFF, but not on-center, ganglion cells. Thus, Vsx1 is required for the late differentiation and function of OFF-CB cells and is associated with a heritable OFF visual pathway-specific retinal defect.
منابع مشابه
Regulation of Retinal Cone Bipolar Cell Differentiation and Photopic Vision by the CVC Homeobox Gene Vsx1
Cone bipolar cells of the vertebrate retina connect photoreceptors with ganglion cells to mediate photopic vision. Despite this important role, the mechanisms that regulate cone bipolar cell differentiation are poorly understood. VSX1 is a CVC domain homeoprotein specifically expressed in cone bipolar cells. To determine the function of VSX1, we generated Vsx1 mutant mice and found that Vsx1 mu...
متن کاملThe Iroquois homeobox gene, Irx5, is required for retinal cone bipolar cell development.
In the mouse retina, at least ten distinct types of bipolar interneurons are involved in the transmission of visual signals from photoreceptors to ganglion cells. How bipolar interneuron diversity is generated during retinal development is poorly understood. Here, we show that Irx5, a member of the Iroquois homeobox gene family, is expressed in developing bipolar cells starting at postnatal day...
متن کاملVsx1 regulates terminal differentiation of type 7 ON bipolar cells.
Although retinal bipolar cells represent a morphologically well defined population of retinal interneurons, very little is known about the developmental mechanisms that regulate their processing. Furthermore, the identity of specific bipolar cell types that function in distinct visual circuits remains poorly understood. Here, we show that the homeobox gene Vsx1 is expressed in Type 7 ON bipolar...
متن کاملRequirement for the paired-like homeodomain transcription factor VSX1 in type 3a mouse retinal bipolar cell terminal differentiation.
Retinal bipolar cells make up a class of at least 11 distinct interneurons that have been classified through morphological and molecular approaches. Previous work has shown that the paired-like homeodomain transcription factor Vsx1 is essential for the proper development of a subset of these interneurons. In Vsx1-null mice, bipolar cells are properly specified but exhibit terminal differentiati...
متن کاملNegative regulation of Vsx1 by its paralog Chx10/Vsx2 is conserved in the vertebrate retina.
Chx10/Vsx2 and Vsx1 are the only Paired-like CVC (Prd-L:CVC) homeobox genes in the mouse genome. Both are expressed in the retina and have important but distinct roles in retinal development. Mutations in Chx10/Vsx2 cause reduced retinal progenitor cell (RPC) proliferation and an absence of bipolar cells, while mutations in Vsx1 impair differentiation of cone bipolar cells. Given their structur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 6 شماره
صفحات -
تاریخ انتشار 2004